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Abstract. The article presents the determination of the dynamic response of a rigid strip footing

bonded to a viscoelastic half-space using an indirect BEM formulation with various interface

traction interpolation models. Non singular constant linear, quadratic and spline interpolation

models and singular linear and spline interpolation models are used. Resulting interface trac-

tion distribution and rotation of the foundation subjected to a roc king moment are presented and

analyzed. The numeric results show that the singular models pro vide much smoother traction

distribution and better conver g ence rates for the foundation rotation.

K eywords: Elastodynamics, Boundary Element Method, Soil-structure interaction, Singular

functions, Splines.

1. INTRODUCTION

The dynamic response of a rigid foundation resting ov er or embeded in an elastic medium

has been obtained, in general, by the Boundary Element Method. Additionaly, it is a common

practice to use half-space Green's and in�uence functions in such analyses. This makes the

discretization necessary only at the soil-structure interface. After the discretization, normally a

constant stress distribution is adopted along each formed element. This methodology was �rst

employed by Lysmer (1965) in the analysis of a rigid disk ov er a half-space, loaded vertically. In

the case of plane strain problems, such as the analysis of rigid strip-footings, the use of constant-

stress elements provides resonable results for the vertical and horizontal displacements of the

foundation using only a moderate number of elements. For the foundation rotation, howev er, the

conv ergence of the results is much slower. Even more, the interface stresses obtained show an

insatisfactory distribution, with sudden signal inv ersions and many oscilations, particularly near

the foundation edges. This behavior is also observed forthev ertical and horizontal dynamic

loads. As a consequence, there is little con�dence on the quality of the obtained displacements.

In order to remov e this uncertainity and to obtain a better estimation of the displacements



and interface stress distributions an extensive study was conducted. The main purpose of this

study was to develop BEM solutions for the strip-foundation problem using stress distribution

models other than the standard constant stress distribution and to analyze the results of both

displacements and interface stresses obtained with each model.

The �rst step was to try to use polynomial interpolation models of higher order. Linear and

quadratic distribution along each interface element were used. As a second step, spline functions

were used to interpolate the stresses along the soil-foundation interface. Finally, singular stress

interpolation elements were used at the foundation edges.

This article describes all these models and the general formulation of them. Comparisons

are made for the results obtained with each model, in terms of interface stresses and displace-

ments.

2. STATEMENT OF THE PROBLEM AND GENERAL SOLUTION

The problem to be used in the analysis is illustrated in Figure 1. It represents a rigid

massless strip footing resting on (and bonded to) the surface of a viscoelastic half-space and

subjected to a set of dynamic external forces and moment. These forces and the moment are

applied harmonically in time with frequency !, so the analysis can be performed in frequency

domain. The footing is in�nitely long in y direction and the loading is uniformly distributed

along the y axis, so it can be considered a plane-strain problem. The objective is to determine

the steady state response of the footing under the in�uence of the external forces.
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Figure 1: Rigid strip footing bonded to a viscoelastic half-space

The response of the rigid structure can be expressed by the equation:
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where w0, u0 and �0 are the (complex) vertical, horizontal displacements and rotation of the

footing, respectively, and G is the shear modulus of the elastic medium. The displacements

and rotation are related to the applied (complex) external forces by the compliance matrix, the

elements of which, Nij, are complex and, in general, frequency dependent.

The compliance matrix is obtained by the superposition method, a specialized version of

the indirect formulation of the BEM that uses half-space solutions (Barros, 1997). Within the

superposition method, �rst the soil-structure interface is discretized with N elements and an

interpolation model for the tractions tx and tz along this interface is chosen. These tractions



should satisfy the equilibrium conditions:
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As there areN elements, these equilibrium equations can be expressed as a summation and

written in a matrix equation with the general form:

ffg = [D] ftg (3)

Additionally, the displacements u and w along the interface should satisfy the rigid body

motion conditions. If the chosen interpolation model has N� degrees of freedom, it will be

necessary to apply these conditions to N� nodes. The set of equations can be written as:

fug = [C] fu0g (4)

On the other hand, the displacements of the points at the interface are functions of the

interface tractions and can be determined by the superposition of in�uence functions with the

general form (Rajapakse and Wang, 1991):
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where uij is the displacement in the i-th direction caused by a surface traction acting in the j-th

direction. Also, � is the wave number, �Uij is the Fourier-transform of the displacement general

solution for a concentrated line load applied on the surface of an elastic half-space (or another

soil pro�le with a known solution) and �t is the Fourier-transform of the traction distribution

function. The superposition of the traction-displacement relation (5) for the N� nodes leads to

the following system of equations:

fug = [U] ftg (6)

The �nal system of equations has the general form:
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To obtain the elementsNij of the compliance matrix, one can set individually each element

of f to one and solve the system of equations given by (7).

3. CONSTANT INTERPOLATION MODEL

The simplest form of interpolation for the interface tractions is the constant interpolation

model. The tractions are assumed to be constant along each interface element, as can be seen in

the Figure 2(a).

For this model the number of degrees of freedom N
� equals the number of elements N , so

there are N nodal points located at the center point of each element. At these nodal points the

rigid body motion conditions, as expressed by equations (4), are imposed. For this calculation

an unitary constant traction strip distribution (see Figure 2(b)) is used.

The constant-type traction distribution t(0) (x) is de�ned as:

t
(0) (x) =

�
1 if � l � x � l

0 otherwise
(8)



(a) (b)

Figure 2: (a)Constant interpolation model for the interface tractions tx and tz , (b)Constant-type tractions

distribution

were l is the half-width of the strip.

The in�uence functions (5) for the constant model are calculated for the constant traction at

each one of the N elements and for the N nodal points. So this evaluation has to be performed

N � N times. This is by far the more lengthy operation of the whole analysis because of

the numerical integration involved in the in�uence function calculation. As a consequence, it

is important to keep the number of in�uence function evaluation as low as possible, from the

computationl e�ciency point of view. This can be accomplished by making all the elements the

same length. By using this strategy only one line of the in�uence matrix U must be evaluated

and the other lines of U can be obtained from this �rst line. The number of in�uence function

evaluation is then reduced toN . The Table 1 shows the number of in�uence function evaluations

for this and the other interpolation models used in this work.

The Figure 3 shows the interface traction distribution t
� = a

2
t=My that results from the

analysis of a rigid strip footing subjected to an external applied dynamic momentMy using 16

constant-type traction elements. The Poisson ratio of the medium is � = 0:4 and the material

internal dumping factor is � = 0:01. For this analysis it was used a non-dimensional frequency

a0 = a!=cs = 1:0, where cs is the shear wave velocity in the elastic medium.
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Figure 3: Interface traction t� (x) distribution for an applied momentMy (a0 = 1, � = 0:4).

The results for the interface stresses in Figure 3 show that there are very high diferences

between the stress values for consecutive elements near the foundation edges. This suggests



that the use of higher degree interpolation models could improve the analysis.

4. LINEAR AND QUADRATIC INTERPOLATIONMODELS

The linear and quadratic interpolation models are natural steps following the constant

model. In these models the interface stresses are assumed to take a linear and quadratic poly-

nomial variation within each interface element (see Figures 4(a) and 4(b)).

(a) (b)

Figure 4: (a)Linear and (b)quadratic interpolation models for the interface tractions tx and tz

The in�uence functions involved in the determination of the nodal points displacements are

obtained by the superposition of (properly weighted) unitary constant, linear and quadratic strip

traction distributions. The linear and quadratic distributions are de�ned as:

t
(k)(x) =

�
x

l

�
k

; k = 1; 2; jxj � l (9)

The plots in Figures 5 and 6 show t
�

x
and t�

z
distributions for an applied dynamic moment

My. For the linear interpolation model the interface was discretized in 16 elements and for the

quadratic model it was used 8 elements.
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Figure 5: Interface traction t
� (x) distribution due to an applied moment My (linear model, a0 = 1,

� = 0:4).

As can be seen in Figures 5 and 6, the linear and quadratic element models lead to non-

smooth stress distributions. These distributions present strong oscilations near the foundation
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Figure 6: Interface traction t� (x) distribution due to an applied moment My (quadratic model, a0 = 1,

� = 0:4).

edges. The oscilations become even more pronounced as the degree of the interpolation model

is increased. It is evident that the interface stresses present a singular behavior at the foundation

edges. The polynomial interpolation incapacity to correctly model this singularity seems to

contaminate the solution throughout the whole interface.

5. SPLINE INTERPOLATION MODELS

Another traction interpolation model that can be applied to the problem analysis is the

spline model. Within this model the interface tractions are assumed to have higher order con-

tinuity throughout the interface. Two spline types were used in the present analysis. The �rst

one is the Overhauser spline (Brewer and Anderson, 1977) that provides C1 continuity. The

other is the cubic spline (de Boor, 1978) that provides C2 continuity. These two splines use

cubic polynomial segments along each element, so one more type of in�uence function (t(3)) is

required. The de�nition of this strip traction distribution follows from equations (9).

The cubic polynomial segments that make up the splines are de�ned as (see Figure 7)

(Barros and Mesquita Neto, 1999):
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3X
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with

�xi =
xi+1 + xi

2
; li = �xi � xi (11)

The parameters cik of the polynomials are given by:
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where si = t
0 (xi). For the cubic spline, the value of si is obtained imposing continuity of the

second derivative at the internal data points xi; i = 2; : : : ; N plus two additional end conditions



Figure 7: Spline traction distribution model

given by t00 (x1) = t
00 (xN+1) = 0. In the case of the Overhauser spline, each si is obtained by

setting a parabola through ti�1, ti and ti+1, and taking the derivative of this parabola at xi.

The plots in Figure 8 show t
�

x
and t�

z
distributions for an applied dynamic momentMy using

the Overhauser spline interpolation model. The results were obtained using 16 elements.
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Figure 8: Interface traction t� (x) distribution due to an applied momentMy (Overhauser spline model,

a0 = 1, � = 0:4).

The results show strong oscilations near the foundation edges. Results for the cubic spline

interpolation model were also obtained and they are almost equal. As with the linear and

quadratic models the singular behavior of the tractions at the foundation edges is clear here.

It shoud be noticed that neither the linear and quadratic models nor the spline models are capa-

ble to reproduce correctly this singularity since they all use polynomials.

6. SINGULAR INTERPOLATION MODELS

The need of a traction interpolation model that can reproduce well the singular behavior of

the interface stresses at the fondation edges is clear from the results presented in the preceding

sections. To cope with this singular behavior it is proposed to add special singular segments to

the ends of the polynomial interpolation curves. This was done �rst with the linear interpola-

tion model. The singular function used at the �rst and last elements are given by (Barros and



Figure 9: Singular-linear interpolation model for the interface tractions tx and tz

Mesquita Neto, 1998):

t
(s)

j
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1q
1�
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x�l

2l

�2 ; jxj � l (13)

where the plus sign is used for the �rst (left) element and the minus sign is used for the last

(right) element. This singular function is added to a linear polynomial function obtained by

imposing continuity of the t0 (x) at the singular element internal nodes (see Figure 9).

The same singular function is used to create singular-ended spline interpolation models

(Barros and Mesquita Neto, 1999). The singular elements are appended to the both ends of

the splines and continuity at internal nodes is imposed. For the cubic singular-ended spline C2

continuity is imposed and for the singular-ended Overhauser spline C1 continuity is imposed.

The Figures 10 and 11 show the interface traction distributions obtained with the singular-

linear and singular-ended Overhauser spline interpolation models respectively. It can be seen

that the distributions are much smoother than those obtained with the non singular models.

Results for the singular-ended cubic spline model show a similar behavior.
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Figure 10: Interface traction t
� (x) distribution due to an applied moment My (singular-linear model,

a0 = 1, � = 0:4).

The Table 1 shows the number of degrees of freedom N
� for each one of the interpola-

tion models used here. It also shows the number of in�uence function evaluations used by

these models for both the case of non uniform discretization N1 and for the case of uniform

discretizationN2.



-1.0 -0.5 0.0 0.5 1.0
-0.5

0.0

t
x
*

x/a
-1.0 -0.5 0.0 0.5 1.0

-3

-2

-1

0

1

2

3
 Real part

 Imag. part

t
z
*

x/a

Figure 11: Interface traction t
� (x) distribution due to an applied moment My (singular-ended Over-

hauser spline model, a0 = 1, � = 0:4).

Table 1: Number of degrees of freedom and number of in�uence function evaluation for the interpolation

models
Interpolation model N

�

N1 N2

Constant N N
2

N

Linear N + 1 2N2 2N

Quadratic 2N + 1 6N2 6N

Splines N + 1 4N2 4N

Singular-linear N + 1 2(N2 +N + 1) 3N + 1

Singular splines N + 1 4N2 � 2N + 6 5N � 1

7. ROTATION CONVERGENCE

In order to verify the convergence of the foundation rotation results for the presented trac-

tion interpolation models, each one was tested with various (uniform) discretization levels. The

plots in Figure 12 show the rotation of a strip foundation bounded to a visco-elastic half-plane

(� = 0:4, � = 0:01) subjected to a dynamic rocking momentMy=a
2 = 1 with non dimensional

frequency a0 = 1, as a function of the number of degrees of freedom N
� of the interpolation

model.

The results in Figure 12 show clearly that the interpolation models that incorporate the

singular function present better convergence rates. Indeed, it can be seen that these models

provide acceptable results even with very small number of elements. On the other hand, the non

singular models seems to converge to incorrect values.

8. CONCLUDING REMARKS

The various traction interpolation models presented in this work represent a wide survey

on the methods that can be used to interpolate the interface stress in the dynamic soil-structure

interaction analysis. The results obtained with these various models show that the incorporation

of the stresses singular behavior to the interpolation model improves in a great extent the quality

of the results and accelerates the convergence. The interpolation methods described herein can

be also applied to the analysis of embeded and burried rigid structures. In this case it can be
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Figure 12: Convergence of the rocking compliance N�m with increasing number of degrees of freedom

N
� for various interpolation models.

anticipated that the singular models will also surpass the non singular ones in terms of stresses

and displacements determination.
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